The Data Science Design Manual (Texts in Computer Science) by Steven S. Skiena
This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and interpreting data.
The Data Science Design Manual is a source of practical insights that highlights what really matters in analyzing data, and provides an intuitive understanding of how these core concepts can be used. The book does not emphasize any particular programming language or suite of data-analysis tools, focusing instead on high-level discussion of important design principles.
This easy-to-read text ideally serves the needs of undergraduate and early graduate students embarking on an “Introduction to Data Science” course. It reveals how this discipline sits at the intersection of statistics, computer science, and machine learning, with a distinct heft and character of its own. Practitioners in these and related fields will find this book perfect for self-study as well.
$5
Access Granted
Start downloading your exclusive member books. Check your membership details Here.
The Data Science Design Manual (Texts in Computer Science) by Steven S. Skiena
Author: Steven S. Skiena
This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and interpreting data.
The Data Science Design Manual is a source of practical insights that highlights what really matters in analyzing data, and provides an intuitive understanding of how these core concepts can be used. The book does not emphasize any particular programming language or suite of data-analysis tools, focusing instead on high-level discussion of important design principles.
This easy-to-read text ideally serves the needs of undergraduate and early graduate students embarking on an “Introduction to Data Science” course. It reveals how this discipline sits at the intersection of statistics, computer science, and machine learning, with a distinct heft and character of its own. Practitioners in these and related fields will find this book perfect for self-study as well.
Additional learning tools:
Contains “War Stories,” offering perspectives on how data science applies in the real world
Includes “Homework Problems,” providing a wide range of exercises and projects for self-study
Provides a complete set of lecture slides and online video lectures at www.data-manual.com
Provides “Take-Home Lessons,” emphasizing the big-picture concepts to learn from each chapter
Recommends exciting “Kaggle Challenges” from the online platform Kaggle
Highlights “False Starts,” revealing the subtle reasons why certain approaches fail
Offers examples taken from the data science television show “The Quant Shop” (www.quant-shop.com)
Looking for a specific book that you can’t find on bookobo? Let us know, and we’ll do our best to add it to our collection. Please fill out the form below with as much detail as possible.
Reviews
There are no reviews yet.